Feature and Search Space Reduction for Label-Dependent Multi-label Classification

نویسنده

  • Prema Nedungadi
چکیده

The problem of high dimensionality in multi-label domain is an emerging research area to explore. A strategy is proposed to combine both multiple regression and hybrid k-Nearest Neighbor algorithm in an efficient way for high-dimensional multi-label classification. The hybrid kNN performs the dimensionality reduction in the feature space of multi-labeled data in order to reduce the search space as well as the feature space for kNN, and multiple regression is used to extract label-dependent information from the label space. Our multi-label classifier incorporates label dependency in the label space and feature similarity in the reduced feature space for prediction. It has various applications in different domains such as in information retrieval, query categorization, medical diagnosis, and marketing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Multi-Label Classification Using Dependent and Independent Dual Space Reduction

While multi-label classification can be widely applied for problems where multiple classes can be assigned to an object, its effectiveness may be sacrificed due to curse of dimensionality in the feature space and sparseness of dimensionality in the label space. As a solution, this paper presents two alternative methods, namely Dependent Dual Space Reduction and Independent Dual Space Reduction,...

متن کامل

A Two-Stage Dual Space Reduction Framework for Multi-label Classification

Multi-label classification has been increasingly recognized since it can classify objects into multiple classes, simultaneously. However, its effectiveness might be sacrificed due to high dimensionality problem in feature space and sparseness problem in label space. To address these issues, this paper proposes a Two-Stage Dual Space Reduction (2SDSR) framework that transforms both feature space...

متن کامل

Multi-Label Classification with Feature-Aware Non-Linear Label Space Transformation

Multi-label classification with many classes has recently drawn a lot of attention. Existing methods address this problem by performing linear label space transformation to reduce the dimension of label space, and then conducting independent regression for each reduced label dimension. These methods however do not capture nonlinear correlations of the multiple labels and may lead to significant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015